Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 261, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472661

RESUMO

Non-coding RNA (ncRNA) plays a vital part in the regulation of immune responses, growth, and development in plants and animals. Here, the identification, characteristic analysis, and molecular verification of circRNAs in Apis cerana cerana worker larval guts were conducted, followed by in-depth investigation of the expression pattern of larval circRNAs during Ascosphaera apis infection and exploration of the potential regulatory part of differentially expressed circRNAs (DEcircRNAs) in host immune responses. A total of 3178 circRNAs in the larval guts of A. c. cerana were identified, with a length distribution ranging from 15 to 96,007 nt. Additionally, 155, 95, and 86 DEcircRNAs were identified in the in the 4-, 5-, and 6-day-old larval guts following A. apis infection. These DEcircRNAs were predicted to target 29, 25, and 18 parental genes relevant to 12, 20, and 17 GO terms as well as 144, 114, and 61 KEGG pathways, including 5 cellular and 4 humoral immune pathways. Complex competing endogenous RNA (ceRNA) regulatory networks were detected as being formed among DEcircRNAs, DEmiRNAs, and DEmRNAs. The target DEmRNAs were engaged in 36, 47, and 47 GO terms as well as 331, 332, and 331 pathways, including 6 cellular and 6 humoral immune pathways. Further, 19 DEcircRNAs, 5 DEmiRNAs, and 3 mRNAs were included in the sub-networks relative to 3 antioxidant enzymes. Finally, back-splicing sites within 15 circRNAs and the difference in the 15 DEcircRNAs' expression between uninoculated and A. apis-inoculated larval guts were confirmed based on molecular methods. These findings not only enrich our understanding of bee host-fungal pathogen interactions but also lay a foundation for illuminating the mechanism underlying the DEcircRNA-mediated immune defense of A. c. cerana larvae against A. apis invasion. KEY POINTS: • The expression pattern of circRNAs was altered in the A. cerana worker larval guts following A. apis infection. • Back-splicing sites within 15 A. cerana circRNAs were verified using molecular approaches. DEcircRNAs potentially modulated immune responses and antioxidant enzymes in A. apis-challenged host guts.


Assuntos
MicroRNAs , Micoses , Abelhas/genética , Animais , Larva/microbiologia , RNA Circular/genética , Antioxidantes , RNA/genética , MicroRNAs/genética
2.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003547

RESUMO

piRNAs are a class of small non-coding RNAs that play essential roles in modulating gene expression and abundant biological processes. To decode the piRNA-regulated larval response of western honeybees (Apis mellifera) to Ascosphaera apis infection, the expression pattern of piRNAs in Apis mellifera ligustica larval guts after A. apis inoculation was analyzed based on previously obtained high-quality small RNA-seq datasets, followed by structural characterization, target prediction, regulatory network investigation, and functional dissection. Here, 504, 657, and 587 piRNAs were respectively identified in the 4-, 5-, and 6-day-old larval guts after inoculation with A. apis, with 411 ones shared. These piRNAs shared a similar length distribution and first base bias with mammal piRNAs. Additionally, 96, 103, and 143 DEpiRNAs were detected in the 4-, 5-, and 6-day-old comparison groups. Targets of the DEpiRNAs were engaged in diverse pathways such as the phosphatidylinositol signaling system, inositol phosphate metabolism, and Wnt signaling pathway. These targets were involved in three energy metabolism-related pathways, eight development-associated signaling pathways, and seven immune-relevant pathways such as the Jak-STAT signaling pathway. The expression trends of five randomly selected DEpiRNAs were verified using a combination of RT-PCR and RT-qPCR. The effective overexpression and knockdown of piR-ame-945760 in A. apis-infected larval guts were achieved by feeding a specific mimic and inhibitor. Furthermore, piR-ame-945760 negatively regulated the expression of two target immune mRNAs, SOCS5 and ARF1, in the larval gut during the A. apis infection. These findings indicated that the overall expression level of piRNAs was increased and the expression pattern of piRNAs in larval guts was altered due to the A. apis infection, DEpiRNAs were putative regulators in the A. apis-response of A. m. ligustica worker larvae. Our data provide not only a platform for the functional investigation of piRNAs in honeybees, especially in bee larvae, but also a foundation for illuminating the piRNA-involved mechanisms underlying the host response to the A. apis infection.


Assuntos
Onygenales , RNA de Interação com Piwi , Abelhas/genética , Animais , Larva/genética , Larva/metabolismo , Via de Sinalização Wnt , Mamíferos
3.
Small ; 18(13): e2107442, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35128794

RESUMO

Due to the growing energy and safety demands, rechargeable all-solid-state Li+ batteries using metallic Li anode and ceramic-based electrolytes have attracted extensive attentions. However, the inherent safety problem of Li metal anode, the ceramic-electrode low Li+ conductivity, and the high electrolyte/electrode solid-solid interfacial impedance slow the development of high-performance all-solid-state batteries. In this work, a three-layer all ceramic battery with Li4 Ti5 O12 ceramic as anode, LiCoO2 as cathode, and Li0.34 La0.56 TiO3 as electrolyte to solve the safety problem is proposed. The low Li+ conductivity of electrodes are effectively addressed by fabricating the electrode/electrolyte composite electrodes in 3D vertically aligned microchannel structures. The large interfacial impedance is greatly reduced by co-constructing the microchannel-dense-microchannel structure with high Li+ conducting electrolytes. Experimental results reveal that a working cell by applying the 3D vertically aligned microchannel three-layer all ceramic structure enables high energy storage at 2 C rate and long cycling stability for more than 500 times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...